skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jones, Abram"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Nanostructured molybdenum disulfide (MoS2) thin films were grown on a nanohole-patterned silicon substrate using plasma-enhanced atomic layer deposition. A nanoscale hole-patterned silicon substrate was fabricated for the growth of MoS2 film using the self-assembly-based nanofabrication method. The nanoscale holes can significantly increase the surface area of the substrate while the formation and growth of nanostructures normally start at the surface of the substrate. Hydrogen sulfide (H2S) gas was used as the S source in the growth of molybdenum disulfide (MoS2) while molybdenum (V) chloride (MoCl5) powder was used as the Mo source. The MoS2 film had a stoichiometric ratio of 1 (Mo) to 2 (S), and had peaks of E12g and A1g, which represent the in-plane and out-plane vibration modes of the Mo–S bond, respectively. It was found that the MoS2 film grown in the nanoscale hole, especially at the wall of the hole, has more hexagonal-like structures due to the effects of nanoscale space confinement and the nanoscale interface although the film shows an amorphous structure. Post-growth high-temperature annealing ranging from 800 to 900 °C produced local crystalline structures in the film, which are compatible with those reported by other researchers. 
    more » « less